Digital Logic Circuits

Examples of FSMs in Verilog

CS-173 Fundamentals of Digital Systems
Mirjana Stojilovic

FUNDAMENTALH o Spring 2025

D IGITAL

SYSTEMS

https://mirjanastojilovic.github.io/cs173/index.html

Examples of FSMs

CS-173, © EPFL, Spring 2025

Quick Outline

= Mealy FSM
= Moore FSM
s Serial Adder FSM

CS-173, © EPFL, Spring 2025

Recall: Finite State Machines

= Two types of FSMs exist

———————————————————————

= Mealy state machines UEDS POV
« Named after George H. Mealy - Machine Outputs

= Moore state machines
« Named after Edward F. Moore Clock

= State transitions occur in sync with the clock edges (e.g., rising)

https://en.wikipedia.org/wiki/George_H._Mealy
https://en.wikipedia.org/wiki/Edward_F._Moore

Recall: Mealy FSM Modeling

In Verilog

| Next-State Logic State memory Output Logic
| (Combinational) (Sequential) (Combinational) i
X IngHis always @ (*) always @(posedge CLK) always @ (*) |
: begin % begin S begin Outputs .
| S_next = .. S <= S_next; Z = .. i
| end >end end
Clock — :
MEALY FSM

__

B Note: Adjust the sensitivity list of the state memory, as required)

Recall: Moore FSM Modeling

In Verilog

i Next-State Logic State memory Output Logic
i (Combinational) (Sequential) (Combinational)
X Input_s always @ (*) always @(posedge CLK) always @ (*) 5
i begin S begin S begin Outputs .
S_next = S <= S_next; Z = .. 5
end end end
— &
Clock 5
e MOORE FSM

Note: Adjust the sensitivity list of the state memory, as required

o /\/

VE

Mealy FSM

Example

CS-173, © EPFL, Spring 2025

Mealy FSM

From state diagram to Verilog

= Figure shows the state
diagram of ...
* Mealy FSM

= \Write the Verilog description

EXAMPLES

Reset
l w=1/z=0

w=0/z=0

CS-173, © EPFL, Spring 2025

Mealy FSM

From state diagram to Verilog, Contd.

» States are...
e A B;
» At least 1 bitis required to present them

EXAMPLES

= [nputs are... focer
 T-bit input w l w=1/z=0

« Outputs are.. e olRo:
* 1-bit z

= Reset input is... w=01=0

« Asynchronous, active high

« Strictly speaking, an edge from every state to A, in case of active Reset, could also be shown
CS-17/3, © EPFL, Spring 2025

Mealy FSM - State/Output Table

From state diagram to Verilog, Contd.

= | et us fill in the state/output table

Current Next

state S gL state Output R
eset

l w=1/z=0

W Z
A 0 A 0
B 0 A 0
1 1

w=0/z=0

EXAMPLES

Note: We cannot "compress” the table here, as every
combination of (S, w) may lead to a different output z

CS-173, © EPFL, Spring 2025

Mealy FSM - Vel'ilOg module fsm_Mealy (

input w, CLK, Reset,
From state diagram to Verilog, Contd. output reg z
)
reg S _next, S;
parameter A = 1'b9, B = 1'bl; // states
// Next-state logic
always @ (*) begin
S_next = A; // chosen as default

case (S)
A: if (w == @) S_next = A;
% c N else S _next = B;
=l urrent ext B: if (w == @) S_next = A;
2 states PUL| grare QutPut else S_next = B;
> default: S_next = A; // chosen as default
S W S_next Z endcase
end
A 0 A 0 // State memory
A 1 B 0 always @ (posedge CLK or posedge Reset) begin
if (Reset == 1) S <= A;
B 0 A 0 else S <= S next;
end
B 1 B 1 // Output logic

always @ (*) begin
if ((S == B) & (w == 1)) z = 1'b1;
else z = 1'bo;

end

CS-173, © EPFL, Spring 2025 endmodule

o /\/

VE

Moore FSM

Example

CS-173, © EPFL, Spring 2025

(7]
i
—
o
=
<
x
1]

Moore FSM

From state diagram to Verilog

= Figure shows the state diagram of...
 Moore FSM

= \Write the Verilog description

CS-173, © EPFL, Spring 2025

Reset

13

(7]
i
—
o
=
<
x
1]

Moore FSM

From state diagram to Verilog, Contd.

= States are.. w0

A B, C;
» At least 2 bits are required to present them

" |[nputs are...
 1-bit input w
» Qutputs are...
* T-bitz
= Reset input is...

« Synchronous, active high

« Strictly speaking, an edge from every state to A, in case of active Reset, could also be shown
CS-173, © EPFL, Spring 2025

14

(7]
i
—
o
=
<
x
1]

Moore FSM - State/Output Table

From state diagram to Verilog, Contd.

= | et us fill in the state/output table

Current Next state Outout
State S S_next P
Input w
S P Z
0 T

A A B
B A C
C A C T

Note: We are able to ‘compress” the table here
as the output z does not depend on the input w

CS-173, © EPFL, Spring 2025

Reset

15

° module fsm_Moore (
Moore FSM — Verilog ™imue waiceses,
. . output reg z);
From state diagram to Verilog, Contd. &
reg [1:0] S_next, S;
parameter A = 2'b00, B = 2'b01, C = 2'b10; // states
// Next-state logic
always @ (*) begin
S_next = A; // chosen as default

case (S)
A: if (w == @) S _next = A;
else S_next = B;
@ B: if (w == 0) S_next = A;
%. Current Next state Output else i =
= state S S_next C: if (w == @) S_next = A;
] | else S_next = C;
g nput w - default: S_next = A; // chosen as default
0 1 endcase
end
A A B // State memory
always @ (posedge CLK) begin
B A C if (Reset == 1) S <= A; // effect of Reset active
C A C else S <= S_next;

end

// Output logic

always @ (*) begin
z = (S == C);

end

CS-17/3, © EPFL, Spring 2025 endmodule

CS-173, © EPFL, Spring 2025

17

CS-173, © EPFL, Spring 2025

18

Serial Adder FSM

Example

CS-173, © EPFL, Spring 2025

Serial Adders

» Fast adders are complex and expensive

= |f speed is not a priority, one could consider a cost-effective
alternative of adding a pair of bits at a time using a serial adder

 Serial adder sums one bit of each of the two operands and
produces one bit of the sum per clock cycle

(7]
i
—
o
=
<
>
]

Designing Serial Adder

= Suggested building blocks

 Shift right register
 Serial input: 1-bit IN
 Parallel 8-bit input, taken when LOAD is active
 Serial output: 1-bit
« Enable input: EN, enables shifting
« Down counter (timer)
 Parallel 4-bit input, taken when LOAD is active
« Enable input: EN, enables counting
« Output decreases by one in every clock cycle

CS-173, © EPFL, Spring 2025

L OAD

IN

EN

S Shifter

EN Counter

Q;Q,Q,Q

27

Serial Adder

Block Diagram

1001
RRR
. Shift—rjght registers output f ‘1“ Long 20
one bit of operands A and B o) EN Counter
: >
in every clock cycle 0 N o 0,Q,Q,Q,
. = Down-counter (timer) counts > Shifter _L
2 the number of cycles for adder | FATQE
L : b, by
addition (the number of pairs | oee | FSM Run
of bits to sum to obtain S) [ORD J;B - o o
0 e o
) N oo
~ Shifter ‘_I\(I)AD
CLK EN Shifter
INIT P ooee

Sum? Sumo
CS-173, © EPFL, Spring 2025 22

Serial Adder

INIT
100 T
BRR
a a D.D,D,D
= INIT Iqaqls new operands f f Long 2
and reinitializes the sum o) EN Counter
. >
and the timer 0 N R 0,0,Q,0Q,
4 « Operands A and B " shifter| |2
2 initialized to new values e QA+QB
- « Sum S initialized to zero by by of
i e) ‘ . e & FSM Run
« Timer initialized to nine —
(the number of operand . |L|\(|)AD QB 0 0
bits + 1), as that many ! EN P
cycles will be required to > Shifter h\?AD
compute the sum EN
CLK s Shifter
INIT P oot

Sum? Sumo
CS-17/3, © EPFL, Spring 2025 23

Serial Adder

Count Down
100 1
RER
= Time’'s up when the output f ‘1“ Long 20
of the timer (down counter) o EN Counter
drops to all zeros ! 'ENN oA " 0,0,0,0,
: = Sequence at the output of > Shifter _L
X the counter . adder | FATCE
° 1 001 -> 1 OOO ‘ P & FSM Run
> 0111 ->0110-> LOAD J;B $ 4 0 0
->0101->0100 -> ! i\ b
EN
> 0011 ->0010 -> ~ Shifter h\?AD
0001 -> 0000 ., " shifter
* Run signal becomes ‘0" INIT T 7
after nine clock cycles Sumy - Sumy

CS-173, © EPFL, Spring 2025

Serial Adder

Count Down, Contd.

1001
RRR
. () a a D.D,D,D
u Wh”e Run — 1 f .. f LOAS 2o
« The timer and the sum register LOAD EN Counter
are enabled (EN ="1") ? lENN 2,0,Q,Q,
ﬁ « The counter counts (time > Shifter QA
= passes, clock cycles elapse) QA+QB
3 i i Adder
= and the sum register receives b, b,
one new bit every clock cycle | FSM Run
. (A [N | 0 0
= \While Run =0 0 T J;B R
» The timer and the sum register ' EN Shifter LOAD
are disabled (EN ='0") lENN
« The counter does not count CLK > Shifter
« The sum S does not change INIT IR

Sum? Sumo
CS-17/3, © EPFL, Spring 2025 25

Serial Adder

Operation, Summary

= |nitialize the shift registers and the counter
 Load (in parallel) vectors A and B in their

—

0
'

'
a ag D

f...; o

0

respective shift registers

> o= -
UU-—O

LOA
 Load the initial value in the timer [OAD —>EN Counter
) « Clear the contents of the sum register " EENN Q;Q,Q,Q
g —+ Shifter
§ = |n each clock cycle
n « Add a pair of bits using the Adder FSM by by AFdeI\‘;f
« Shift the resulting sum bit into the output register R J _ .
0 0
« Shift the input vectors A and B to release 0 I-,\C])AD L ooee |
the next pair of bits to be added ! .._>ENSh|fter COAD
- Decrement the counter (count down...) EENN
: . : CLK S~ Shifter
= Stop when the timer finishes counting NI —
» The number of clock cycles should be chosen Sumy — Sumy

so that all eight bits of the sum get stored

in the corresponding register, one per cycle .,

%)
L
-l
o
=
<
x
i

Serial Adder

Example Sum

= Consider A=(00101011), and B = (0011 0010),

= The expected sum Sis (0101 1101), (0100 0100), Carry
= Sequence at the output of the sum register (0010 1011)2
« 0000 0000 -> 1000 0000 + (0011 0010)2
-> (0700 0000 ->10170 0000 (0101 1101)5
-> 1707 0000->11170 1000 = (5D)16
>01110100->1011 1010
> 01707 1107

« The initial value is all zeros
 Eight clock cycles are required to shift in the eight bits of the sum

CS-173, © EPFL, Spring 2025

27

(7]
i
—
o
=
<
>
]

Serial Adder

Timing Diagram

CLK

| | I
1 | | L 1 1

A

A

Ao)
|

A A A A A R A A N A A A
| | | I I

PV

Cary (0100 0100),

I
I
///I//////I////‘I/f’/////////////l////
i I
I
I
|

/ / /

0010 1011)+] ><'boo11 0010 |/

T T
7 A A A
noLor 5

A
/

1 T T T T T

A A A A A A Y.

A A A N A A
. Vi . Lt /

|

2 INIT ! "

A A S I e I

10111012 //////u| [|
o N L

= (5D)16 . 3
QB

/_‘\/-“\/_‘\/_‘\

)
)
0011 0010)
)

|
/ [A A A T
VY A A bo
P S A S S S R

| |

| |
I A A A A A h
VY A H'b1001 \\flblﬂoo
A A A i

L— Ve — - - f

Counter OUT

Run

~ 7 -7 =~ 7 —/~ 71 initialvalue 1 ,— - — — —
A
A bo

Lo/ L

QA + QB

___/'__/_7'_/_7'(

[
A A Y.
///////‘hoo‘
VA S A S Sy S I R L
| [
‘ ‘

Sum 'h00

CS-173, © EPFL, Spring 2025

,______

_—— e — —

b0111 " 'b0110

ﬂ

|
'Run ac

/ 'h80
4 _

_____ Oy T T T T

h [1 | |

" 'b0 'bl | 'b0 | 'bO |
T

)y 'bl o 'bl 0 b0 'O | :

1’0101 0100 60011 'b0010 ! 'b0001 | 60000 |

i 1 Ve = R it A 4= {1V === f e B!
L____L____L____L____L____L____L____L, |
i tive during these clock cycles: Y
- - - - - - - - - = 7\ \’ 777777 :‘ : :

- 'bl | 'bl l\\ 'b0 Lz 'bl1 | 'bO |

: : : ! : ;umcomplet(;

————— LA A Vi VR Ve

' 'nAO / 'hDO 'hE8 | 'h74 | 'hBA ! 'h5D |

28

Serial Adder

Timing Diagram, Contd.
CLK

| | | | | I |
1 | | L 1 1 1

/ / / / l/ / / / ‘/ ! / / ‘/ / / / ‘/’ / / / I/ / / / I/ / / / l/ / / /

I I

| I

I I

A A A A A A D A A A A A R A A A A
I ! ! | I I !

I I

I I

Carry (0100 0100)5

T T I I I I T T I
/ / / / oY / / VA / / A / / AT / / Y / / AT / / o / / /v / / oV / / /

) i
0010 1011)2 5 /| 00011 0010 SIS IS IS SIS YIS I .
0011 0010)5 I |
)

|

1 |
- I
I
I
0101 110]_ 2 /7 /r// /T // /7T
QA L/,/iL/,/i 1/,/:77‘.i
= (5D)16 I l
r oy ey 4
VA A :\
QB /.l Ll
|
|
-7 T T T T T
VY A A A

Counter OUT /7 7 7/

L,/,L,/,J,L,{

(
(
(
(

(7]
i
—
o
=
<
>
]

Run VY A

/o A A

QA+QB I__/_.L_/__[_/__/.r
|

7/'__/_7'_/_7'(

A A A A

CS-173, © EPFL, Spring 2025 Sum A

(7]
i
—
o
=
<
>
]

Serial Adder FSM

When INIT is Active

= Adder FSM needs only two states
« SO: when carry is 'O
« ST: whencarryis 1

INIT

ST

s=x+y+1

INIT

CS-173, © EPFL, Spring 2025

xr
Adder S

FSM

s=x+vy+carry

Note: INIT active means that new
operands are loaded and new addition can
commence; carry-in is therefore 0, and so
the state machine must remain in or return
to the SO state (in which carry-in is '0);

30

Serial Adder FSM

When INIT is Inactive

= Adder FSM needs only two states T add
er
« SO: when carry is 'O’ y oV
« ST: whencarryis 1’

s=x+vy+carry
INIT,
{z,y} ={0,0} or {z,y} ={0,1} or {z,y} = {1,0}

EXAMPLES

INIT,
{x,y} — {Oa 1} or {:an} — {190} or {a:,y} = {17 1}

{:va} — {19 1}

Note: INIT inactive means
the addition is in process

CS-173, © EPFL, Spring 2025 31

Serial Adder FSM, Contd.

= Adder FSM with two states o
M 1 1 er
« SO: when carry is '0 FSM
. 111 y
» « S1: when carryis 1
- §=x+Yy+carry
2 = State/output tables
INIT=0 INIT = 1
Present | Next state S_next Output s Present | NExt state S_next Output s
State One-bit Inputs xy One-bit Inputs xy State One-bit Inputs xy One-bit Inputs xy
S 00 01 10 11|00 O1 10 1T S 00 01 10 11|00 O1 10 1T
SO SO SO SO S1| O 1 1 0 SO SO SO SO SO | O 1 1 0
ST SO ST S1 S1 | 1 0 O 1 ST SO SO SO SO | 1 0 O 1

CS-173, © EPFL, Spring 2025

Serial Adder FSM e e Taladderon o by T
In Verilog . parameter n = 8; i
. input a, b, init, clk;
- output reg sum;
1 . parameter SO = 1'b@, S1 = 1'bl;

1700
EER . reg S_next, S;
a; aq D,D,D,D, . // Next-state logic
R | — EC[\)]ADCounter - always @(*) begin
LOAD >
(72] v |N — Q;Q,Q,Q,
- L EN
a — . Shifter
2
n b b | Adder
! ’ FSM
‘ cee ‘ - | Run
| OAD 1 0o 0
TN b
._>ENShifter I_I\(I)AD
CLK >ENShifter
INIT ' !

CS-173, © EPFL, Spring 2025 33

Serlal Adder FSM 'module serialadderfsm (a, b, init, clk, sum); |
In Verilog . parameter n = 8; 5
. dinput a, b, init, clk;

output reg sum;

parameter SO = 1'b0, S1 = 1'bl;

reg S_next, S;

// Next-state logic

always @(*) begin

INIT

EXAMPLES

ST

s=x+y+1

INIT

CS-173, © EPFL, Spring 2025 34

Serlal Adder FSM 'module serialadderfsm (a, b, init, clk, sum); |
In Verilog . parameter n = 8; 5
. dinput a, b, init, clk;
output reg sum;
parameter SO = 1'b0, S1 = 1'bl;
reg S_next, S;
// Next-state logic
always @(*) begin
S next = SO;
case (S)
| SO: begin
ST i if (init) S next = SO;

INIT

EXAMPLES

s=r+y+1

end
: S1: begin
INIT i if (init) S_next = SO;

end
default: S next = SO;
endcase
end

CS-173, © EPFL, Spring 2025 35

Serlal Adder FSM imodule serialadderfsm (a, b, init, clk, sum);

In Verilog parameter n = 8; i
. input a, b, init, clk;

output reg sum;

parameter SO = 1'b0, S1 = 1'bl;

reg S_next, S;

E // Next-state logic
{0,0} or {x,y} - {07 1} or {QU,Q} — {170} alway)s(@(*) begiﬁl

| S next = SO;
% INIT, | case (S)
5 ' SO: begin
: {z,y}={ ©
] | else if (a & b) S next = S1;
else S next = SO;
end

S1: begin

else if (~a & ~b) S next = SO;

else S next = S1;
end
default: S next = SO;
endcase

end

CS-173, © EPFL, Spring 2025 36

Serial Adder FSM

In Verilog

__

. // State memory

' // Synchronous reset

'always @ (posedge clk) begin
. if (init) S <= Se;

. else S <= S_next;

- end

EXAMPLES

' // Output logic
always @(*) begin

ST | if (S == S@) sum = a " b;
. else sum = ~(a ™ b);
o i " end
\/ i
" endmodule

__

CS-173, © EPFL, Spring 2025

CS-173, © EPFL, Spring 2025

38

Literature

FUNDAMENTALS OF

DIGITAL LOGIC

with Verilog Design

CS-173, © EPFL, Spring 2025

= Appendix A: Verilog Reference
= A148,A1409

= Chapter 6: Synchronous Sequential Circuits
= 6.5 Serial Adder Example

39

