
Digital Logic Circuits
Examples of FSMs in Verilog

CS-173 Fundamentals of Digital Systems

Mirjana Stojilović

Spring 2025

https://mirjanastojilovic.github.io/cs173/index.html

Examples of FSMs

2CS-173, © EPFL, Spring 2025

Quick Outline

▪ Mealy FSM

▪ Moore FSM

▪ Serial Adder FSM

3CS-173, © EPFL, Spring 2025

4

Recall: Finite State Machines

▪ Two types of FSMs exist

▪ Mealy state machines
• Named after George H. Mealy

▪ Moore state machines
• Named after Edward F. Moore

▪ State transitions occur in sync with the clock edges (e.g., rising)

CS-173, © EPFL, Spring 2025

Finite State
Machine

Inputs

Clock

Outputs

https://en.wikipedia.org/wiki/George_H._Mealy
https://en.wikipedia.org/wiki/Edward_F._Moore

5

Recall: Mealy FSM Modeling
In Verilog

CS-173, © EPFL, Spring 2025

always @ (*)
begin
S_next = …
end

always @(posedge CLK)
begin
S <= S_next;

end

always @ (*)
begin
Z = …

end

X

Clock
MEALY FSM

Snext OutputsS

Next-State Logic
(Combinational)

State memory
(Sequential)

Output Logic
(Combinational)

Inputs

Z

Note: Adjust the sensitivity list of the state memory, as required

6

Recall: Moore FSM Modeling
In Verilog

CS-173, © EPFL, Spring 2025

always @ (*)
begin
S_next = …
end

always @(posedge CLK)
begin
S <= S_next;

end

always @ (*)
begin
Z = …

end

X

Clock
MOORE FSM

Snext OutputsS

Next-State Logic
(Combinational)

State memory
(Sequential)

Output Logic
(Combinational)

Inputs

Z

Note: Adjust the sensitivity list of the state memory, as required

Mealy FSM
Example

7CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

8

Mealy FSM
From state diagram to Verilog

▪ Figure shows the state
diagram of…
• Mealy FSM

▪ Write the Verilog description

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

9

Mealy FSM
From state diagram to Verilog, Contd.

▪ States are…
• A, B;

• At least 1 bit is required to present them

▪ Inputs are…
• 1-bit input w

▪ Outputs are…
• 1-bit z

▪ Reset input is…
• Asynchronous, active high

• Strictly speaking, an edge from every state to A, in case of active Reset, could also be shown
CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

10

Mealy FSM – State/Output Table
From state diagram to Verilog, Contd.

▪ Let us fill in the state/output table

CS-173, © EPFL, Spring 2025

Current
state S

Input
Next
state

Output

S w S_next z

A 0 A 0

A 1 B 0

B 0 A 0

B 1 B 1

Note: We cannot "compress" the table here, as every
combination of (S, w) may lead to a different output z

E
X

A
M

P
L

E
S

11

Mealy FSM – Verilog
From state diagram to Verilog, Contd.

CS-173, © EPFL, Spring 2025

Current
state S

Input
Next
state

Output

S w S_next z

A 0 A 0

A 1 B 0

B 0 A 0

B 1 B 1

module fsm_Mealy (
input w, CLK, Reset,
output reg z

);
reg S_next, S;
parameter A = 1'b0, B = 1'b1; // states
// Next-state logic
always @ (*) begin

S_next = A; // chosen as default
case (S)

A: if (w == 0) S_next = A;
else S_next = B;

B: if (w == 0) S_next = A;
else S_next = B;

default: S_next = A; // chosen as default
endcase

end
// State memory
always @ (posedge CLK or posedge Reset) begin

if (Reset == 1) S <= A;
else S <= S_next;

end
// Output logic
always @ (*) begin

if ((S == B) && (w == 1)) z = 1'b1;
else z = 1'b0;

end
endmodule

Moore FSM
Example

12CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

13

Moore FSM
From state diagram to Verilog

▪ Figure shows the state diagram of…
• Moore FSM

▪ Write the Verilog description

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

14

Moore FSM
From state diagram to Verilog, Contd.

▪ States are…
• A, B, C;

• At least 2 bits are required to present them

▪ Inputs are…
• 1-bit input w

▪ Outputs are…
• 1-bit z

▪ Reset input is…
• Synchronous, active high

• Strictly speaking, an edge from every state to A, in case of active Reset, could also be shown
CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

Current
state S

Next state
S_next

Output

S
Input w

z
0 1

15

Moore FSM – State/Output Table
From state diagram to Verilog, Contd.

▪ Let us fill in the state/output table

CS-173, © EPFL, Spring 2025

Current
state S

Next state
S_next

Output

S
Input w

z
0 1

A A B 0

B A C 0

C A C 1

Note: We are able to "compress" the table here
as the output z does not depend on the input w

E
X

A
M

P
L

E
S

16

Moore FSM – Verilog
From state diagram to Verilog, Contd.

CS-173, © EPFL, Spring 2025

module fsm_Moore (
input w, CLK, Reset,
output reg z);

reg [1:0] S_next, S;
parameter A = 2'b00, B = 2'b01, C = 2'b10; // states
// Next-state logic
always @ (*) begin

S_next = A; // chosen as default
case (S)

A: if (w == 0) S_next = A;
else S_next = B;

B: if (w == 0) S_next = A;
else S_next = C;

C: if (w == 0) S_next = A;
else S_next = C;

default: S_next = A; // chosen as default
endcase

end
// State memory
always @ (posedge CLK) begin

if (Reset == 1) S <= A; // effect of Reset active
else S <= S_next;

end
// Output logic
always @ (*) begin

z = (S == C);
end

endmodule

Current
state S

Next state
S_next

Output

S
Input w

z
0 1

A A B 0

B A C 0

C A C 1

CS-173, © EPFL, Spring 2025 17

CS-173, © EPFL, Spring 2025 18

Serial Adder FSM
Example

19CS-173, © EPFL, Spring 2025

20

Serial Adders

▪ Fast adders are complex and expensive

▪ If speed is not a priority, one could consider a cost-effective
alternative of adding a pair of bits at a time using a serial adder
• Serial adder sums one bit of each of the two operands and

produces one bit of the sum per clock cycle

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

21

Designing Serial Adder

▪ Suggested building blocks
• Shift right register

• Serial input: 1-bit IN

• Parallel 8-bit input, taken when LOAD is active

• Serial output: 1-bit

• Enable input: EN, enables shifting

• Down counter (timer)

• Parallel 4-bit input, taken when LOAD is active

• Enable input: EN, enables counting

• Output decreases by one in every clock cycle

CS-173, © EPFL, Spring 2025

E
X

A
M

P
L

E
S

22

Serial Adder
Block Diagram

▪ Shift-right registers output
one bit of operands A and B
in every clock cycle

▪ Down-counter (timer) counts
the number of cycles for
addition (the number of pairs
of bits to sum to obtain S)

CS-173, © EPFL, Spring 2025

LOAD
EN

EN

LOAD
IN

EN

LOAD
IN

EN

LOAD
IN

Adder
FSM

Counter

Shifter

Shifter

Shifter

CLK
INIT

QA

QB

QA+QB

1 0 0 1

E
X

A
M

P
L

E
S

23

Serial Adder
INIT

▪ INIT loads new operands
and reinitializes the sum
and the timer
• Operands A and B

initialized to new values

• Sum S initialized to zero

• Timer initialized to nine
(the number of operand
bits + 1), as that many
cycles will be required to
compute the sum

CS-173, © EPFL, Spring 2025

LOAD
EN

EN

LOAD
IN

EN

LOAD
IN

EN

LOAD
IN

Adder
FSM

Counter

Shifter

Shifter

Shifter

CLK
INIT

QA

QB

QA+QB

1 0 0 1

E
X

A
M

P
L

E
S

24

Serial Adder
Count Down

▪ Time’s up when the output
of the timer (down counter)
drops to all zeros

▪ Sequence at the output of
the counter

• 1001 -> 1000
-> 0111 -> 0110 ->
-> 0101 -> 0100 ->
-> 0011 -> 0010 ->
-> 0001 -> 0000

• Run signal becomes ‘0’
after nine clock cycles

CS-173, © EPFL, Spring 2025

LOAD
EN

EN

LOAD
IN

EN

LOAD
IN

EN

LOAD
IN

Adder
FSM

Counter

Shifter

Shifter

Shifter

CLK
INIT

QA

QB

QA+QB

1 0 0 1

E
X

A
M

P
L

E
S

25

Serial Adder
Count Down, Contd.

▪ While Run = ‘1’
• The timer and the sum register

are enabled (EN = '1')

• The counter counts (time
passes, clock cycles elapse)
and the sum register receives
one new bit every clock cycle

▪ While Run = ‘0’
• The timer and the sum register

are disabled (EN = '0')

• The counter does not count

• The sum S does not change

CS-173, © EPFL, Spring 2025

LOAD
EN

EN

LOAD
IN

EN

LOAD
IN

EN

LOAD
IN

Adder
FSM

Counter

Shifter

Shifter

Shifter

CLK
INIT

QA

QB

QA+QB

1 0 0 1

E
X

A
M

P
L

E
S

26

Serial Adder
Operation, Summary

▪ Initialize the shift registers and the counter

• Load (in parallel) vectors A and B in their
respective shift registers

• Load the initial value in the timer

• Clear the contents of the sum register

▪ In each clock cycle

• Add a pair of bits using the Adder FSM

• Shift the resulting sum bit into the output register

• Shift the input vectors A and B to release
the next pair of bits to be added

• Decrement the counter (count down…)

▪ Stop when the timer finishes counting

• The number of clock cycles should be chosen
so that all eight bits of the sum get stored
in the corresponding register, one per cycle

LOAD
EN

EN

LOAD
IN

EN

LOAD
IN

EN

LOAD
IN

Adder
FSM

Counter

Shifter

Shifter

Shifter

CLK
INIT

1 0 0 1

E
X

A
M

P
L

E
S

27

Serial Adder
Example Sum

▪ Consider A = (0010 1011)2 and B = (0011 0010)2

▪ The expected sum S is (0101 1101)2

▪ Sequence at the output of the sum register
• 0000 0000 -> 1000 0000

-> 0100 0000 -> 1010 0000
-> 1101 0000 -> 1110 1000
-> 0111 0100 -> 1011 1010
-> 0101 1101

• The initial value is all zeros

• Eight clock cycles are required to shift in the eight bits of the sum

CS-173, © EPFL, Spring 2025

Carry

E
X

A
M

P
L

E
S

Carry

28

Serial Adder
Timing Diagram

CS-173, © EPFL, Spring 2025

Run active during these clock cycles

initial value

Sum completed

E
X

A
M

P
L

E
S

29

Serial Adder
Timing Diagram, Contd.

CS-173, © EPFL, Spring 2025

Carry

E
X

A
M

P
L

E
S

30

Serial Adder FSM
When INIT is Active

▪ Adder FSM needs only two states
• S0: when carry is '0'

• S1: when carry is '1'

CS-173, © EPFL, Spring 2025

Note: INIT active means that new
operands are loaded and new addition can
commence; carry-in is therefore 0, and so

the state machine must remain in or return
to the S0 state (in which carry-in is '0');

Adder
FSM

S0 S1

E
X

A
M

P
L

E
S

31

Serial Adder FSM
When INIT is Inactive

▪ Adder FSM needs only two states
• S0: when carry is '0'

• S1: when carry is '1'

CS-173, © EPFL, Spring 2025

Note: INIT inactive means
the addition is in process

S0 S1

Adder
FSM

E
X

A
M

P
L

E
S

32

Serial Adder FSM, Contd.

▪ Adder FSM with two states
• S0: when carry is '0'

• S1: when carry is '1'

▪ State/output tables

CS-173, © EPFL, Spring 2025

INIT = 0

Present
State

S

Next state S_next Output s

One-bit Inputs xy One-bit Inputs xy

00 01 10 11 00 01 10 11

S0 S0 S0 S0 S1 0 1 1 0

S1 S0 S1 S1 S1 1 0 0 1

INIT = 1

Present
State

S

Next state S_next Output s

One-bit Inputs xy One-bit Inputs xy

00 01 10 11 00 01 10 11

S0 S0 S0 S0 S0 0 1 1 0

S1 S0 S0 S0 S0 1 0 0 1

Adder
FSM

E
X

A
M

P
L

E
S

LOAD
EN

EN

LOAD
IN

EN

LOAD
IN

EN

LOAD
IN

Adder
FSM

Counter

Shifter

Shifter

Shifter

CLK
INIT

1 0 0 1

33

Serial Adder FSM
In Verilog

CS-173, © EPFL, Spring 2025

module serialadderfsm (a, b, init, clk, sum);
parameter n = 8;
input a, b, init, clk;
output reg sum;
parameter S0 = 1'b0, S1 = 1'b1;
reg S_next, S;
// Next-state logic
always @(*) begin

end

E
X

A
M

P
L

E
S

34

Serial Adder FSM
In Verilog

CS-173, © EPFL, Spring 2025

module serialadderfsm (a, b, init, clk, sum);
parameter n = 8;
input a, b, init, clk;
output reg sum;
parameter S0 = 1'b0, S1 = 1'b1;
reg S_next, S;
// Next-state logic
always @(*) begin

end

S0 S1

E
X

A
M

P
L

E
S

35

Serial Adder FSM
In Verilog

CS-173, © EPFL, Spring 2025

module serialadderfsm (a, b, init, clk, sum);
parameter n = 8;
input a, b, init, clk;
output reg sum;
parameter S0 = 1'b0, S1 = 1'b1;
reg S_next, S;
// Next-state logic
always @(*) begin
S_next = S0;
case (S)
S0: begin
if (init) S_next = S0;
else if (a & b) S_next = S1;
else S_next = S0;

end
S1: begin
if (init) S_next = S0;
else if (~a & ~b) S_next = S0;
else S_next = S1;

end
default: S_next = S0;

endcase
end

S0 S1

E
X

A
M

P
L

E
S

S0 S1

36

Serial Adder FSM
In Verilog

CS-173, © EPFL, Spring 2025

module serialadderfsm (a, b, init, clk, sum);
parameter n = 8;
input a, b, init, clk;
output reg sum;
parameter S0 = 1'b0, S1 = 1'b1;
reg S_next, S;
// Next-state logic
always @(*) begin
S_next = S0;
case (S)
S0: begin
if (init) S_next = S0;
else if (a & b) S_next = S1;
else S_next = S0;

end
S1: begin
if (init) S_next = S0;
else if (~a & ~b) S_next = S0;
else S_next = S1;

end
default: S_next = S0;

endcase
end

E
X

A
M

P
L

E
S

37

Serial Adder FSM
In Verilog

CS-173, © EPFL, Spring 2025

// State memory
// Synchronous reset
always @ (posedge clk) begin
if (init) S <= S0;
else S <= S_next;

end

// Output logic
always @(*) begin
if (S == S0) sum = a ^ b;
else sum = ~(a ^ b);

end

endmodule

S0 S1

CS-173, © EPFL, Spring 2025 38

39

Literature

CS-173, © EPFL, Spring 2025

▪ Appendix A: Verilog Reference
▪ A.14.8, A.14.9

▪ Chapter 6: Synchronous Sequential Circuits
▪ 6.5 Serial Adder Example

