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Quick Outline

▪ Mealy FSM

▪ Moore FSM

▪ Serial Adder FSM
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Recall: Finite State Machines

▪ Two types of FSMs exist

▪ Mealy state machines
• Named after George H. Mealy

▪ Moore state machines
• Named after Edward F. Moore

▪ State transitions occur in sync with the clock edges (e.g., rising)
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Recall: Mealy FSM Modeling
In Verilog
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always @ (*)
begin
S_next = …
end

always @(posedge CLK)
begin
S <= S_next;

end

always @ (*)
begin
Z = …

end

X

Clock
MEALY FSM

Snext OutputsS

Next-State Logic
(Combinational)

State memory
(Sequential)

Output Logic
(Combinational)

Inputs

Z

Note: Adjust the sensitivity list of the state memory, as required
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Recall: Moore FSM Modeling
In Verilog
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always @ (*)
begin
S_next = …
end

always @(posedge CLK)
begin
S <= S_next;

end

always @ (*)
begin
Z = …

end

X

Clock
MOORE FSM

Snext OutputsS

Next-State Logic
(Combinational)

State memory
(Sequential)

Output Logic
(Combinational)

Inputs

Z

Note: Adjust the sensitivity list of the state memory, as required



Mealy FSM
Example
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Mealy FSM
From state diagram to Verilog

▪ Figure shows the state 
diagram of…
• Mealy FSM

▪ Write the Verilog description
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Mealy FSM
From state diagram to Verilog, Contd.

▪ States are…
• A, B; 

• At least 1 bit is required to present them

▪ Inputs are…
• 1-bit input w

▪ Outputs are…
• 1-bit z

▪ Reset input is…
• Asynchronous, active high

• Strictly speaking, an edge from every state to A, in case of active Reset, could also be shown
CS-173, © EPFL, Spring 2025
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Mealy FSM – State/Output Table
From state diagram to Verilog, Contd.

▪ Let us fill in the state/output table

CS-173, © EPFL, Spring 2025

Current 
state S

Input
Next
state

Output

S w S_next z

A 0 A 0

A 1 B 0

B 0 A 0

B 1 B 1

Note: We cannot "compress" the table here, as every
combination of (S, w) may lead to a different output z
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Mealy FSM – Verilog
From state diagram to Verilog, Contd.
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Current 
state S

Input
Next
state

Output

S w S_next z

A 0 A 0

A 1 B 0

B 0 A 0

B 1 B 1

module fsm_Mealy (
input w, CLK, Reset,
output reg z

);
reg S_next, S;
parameter A = 1'b0, B = 1'b1; // states
// Next-state logic
always @ (*) begin

S_next = A;  // chosen as default 
case (S)

A:  if (w == 0) S_next = A;
else S_next = B;

B:  if (w == 0) S_next = A;
else S_next = B;

default:        S_next = A;  // chosen as default
endcase

end
// State memory
always @ (posedge CLK or posedge Reset) begin

if (Reset == 1) S <= A;
else S <= S_next;

end
// Output logic
always @ (*) begin

if ((S == B) && (w == 1)) z = 1'b1;
else z = 1'b0;

end
endmodule



Moore FSM
Example
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Moore FSM
From state diagram to Verilog

▪ Figure shows the state diagram of…
• Moore FSM

▪ Write the Verilog description
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Moore FSM
From state diagram to Verilog, Contd.

▪ States are…
• A, B, C; 

• At least 2 bits are required to present them

▪ Inputs are…
• 1-bit input w

▪ Outputs are…
• 1-bit z

▪ Reset input is…
• Synchronous, active high

• Strictly speaking, an edge from every state to A, in case of active Reset, could also be shown
CS-173, © EPFL, Spring 2025
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Moore FSM – State/Output Table
From state diagram to Verilog, Contd.

▪ Let us fill in the state/output table
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Current 
state S

Next state
S_next

Output

S
Input w

z
0 1

A A B 0

B A C 0

C A C 1

Note: We are able to "compress" the table here
as the output z does not depend on the input w
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Moore FSM – Verilog
From state diagram to Verilog, Contd.
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module fsm_Moore (
input w, CLK, Reset,
output reg z);

reg [1:0] S_next, S;
parameter A = 2'b00, B = 2'b01, C = 2'b10; // states
// Next-state logic
always @ (*) begin

S_next = A;  // chosen as default
case (S)

A: if (w == 0) S_next = A;
else S_next = B;

B: if (w == 0) S_next = A;
else S_next = C;

C: if (w == 0) S_next = A;
else S_next = C;

default:       S_next = A;  // chosen as default
endcase

end
// State memory
always @ (posedge CLK) begin

if (Reset == 1) S <= A; // effect of Reset active
else S <= S_next;

end
// Output logic
always @ (*) begin

z = (S == C);
end

endmodule

Current 
state S

Next state
S_next

Output

S
Input w

z
0 1

A A B 0

B A C 0

C A C 1



CS-173, © EPFL, Spring 2025 17



CS-173, © EPFL, Spring 2025 18



Serial Adder FSM
Example
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Serial Adders

▪ Fast adders are complex and expensive

▪ If speed is not a priority, one could consider a cost-effective 
alternative of adding a pair of bits at a time using a serial adder
• Serial adder sums one bit of each of the two operands and

produces one bit of the sum per clock cycle
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Designing Serial Adder

▪ Suggested building blocks
• Shift right register

• Serial input: 1-bit IN

• Parallel 8-bit input, taken when LOAD is active

• Serial output: 1-bit

• Enable input: EN, enables shifting

• Down counter (timer)

• Parallel 4-bit input, taken when LOAD is active

• Enable input: EN, enables counting

• Output decreases by one in every clock cycle
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Serial Adder
Block Diagram

▪ Shift-right registers output 
one bit of operands A and B 
in every clock cycle

▪ Down-counter (timer) counts
the number of cycles for 
addition (the number of pairs 
of bits to sum to obtain S)
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Serial Adder
INIT

▪ INIT loads new operands 
and reinitializes the sum 
and the timer
• Operands A and B 

initialized to new values

• Sum S initialized to zero

• Timer initialized to nine 
(the number of operand 
bits + 1), as that many 
cycles will be required to 
compute the sum
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Serial Adder
Count Down

▪ Time’s up when the output 
of the timer (down counter) 
drops to all zeros

▪ Sequence at the output of 
the counter

• 1001 -> 1000
-> 0111 -> 0110 -> 
-> 0101 -> 0100 -> 
-> 0011 -> 0010 -> 
-> 0001 -> 0000

• Run signal becomes ‘0’ 
after nine clock cycles
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Serial Adder
Count Down, Contd.

▪ While Run = ‘1’
• The timer and the sum register 

are enabled (EN = '1')

• The counter counts (time 
passes, clock cycles elapse)
and the sum register receives 
one new bit every clock cycle

▪ While Run = ‘0’
• The timer and the sum register 

are disabled (EN = '0')

• The counter does not count

• The sum S does not change
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Serial Adder
Operation, Summary

▪ Initialize the shift registers and the counter

• Load (in parallel) vectors A and B in their 
respective shift registers

• Load the initial value in the timer

• Clear the contents of the sum register

▪ In each clock cycle

• Add a pair of bits using the Adder FSM

• Shift the resulting sum bit into the output register

• Shift the input vectors A and B to release
the next pair of bits to be added

• Decrement the counter (count down…)

▪ Stop when the timer finishes counting

• The number of clock cycles should be chosen
so that all eight bits of the sum get stored
in the corresponding register, one per cycle
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Serial Adder
Example Sum

▪ Consider A = (0010 1011)2 and B = (0011 0010)2

▪ The expected sum S is (0101 1101)2

▪ Sequence at the output of the sum register
• 0000 0000 -> 1000 0000

-> 0100 0000 -> 1010 0000
-> 1101 0000 -> 1110 1000
-> 0111 0100 -> 1011 1010
-> 0101 1101

• The initial value is all zeros

• Eight clock cycles are required to shift in the eight bits of the sum
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Serial Adder
Timing Diagram
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Run active during these clock cycles

initial value

Sum completed
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Serial Adder
Timing Diagram, Contd.
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Serial Adder FSM
When INIT is Active

▪ Adder FSM needs only two states
• S0: when carry is '0'

• S1: when carry is '1'
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Note: INIT active means that new 
operands are loaded and new addition can 
commence; carry-in is therefore 0, and so 

the state machine must remain in or return 
to the S0 state (in which carry-in is '0');

Adder
FSM

S0 S1
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Serial Adder FSM
When INIT is Inactive

▪ Adder FSM needs only two states
• S0: when carry is '0'

• S1: when carry is '1'
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Note: INIT inactive means
the addition is in process

S0 S1

Adder
FSM
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Serial Adder FSM, Contd.

▪ Adder FSM with two states
• S0: when carry is '0'

• S1: when carry is '1'

▪ State/output tables
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INIT = 0

Present
State

S

Next state S_next Output s

One-bit Inputs xy One-bit Inputs xy

00 01 10 11 00 01 10 11

S0 S0 S0 S0 S1 0 1 1 0

S1 S0 S1 S1 S1 1 0 0 1

INIT = 1

Present
State

S

Next state S_next Output s

One-bit Inputs xy One-bit Inputs xy

00 01 10 11 00 01 10 11

S0 S0 S0 S0 S0 0 1 1 0

S1 S0 S0 S0 S0 1 0 0 1

Adder
FSM
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Serial Adder FSM
In Verilog
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module serialadderfsm (a, b, init, clk, sum);
parameter n = 8;
input a, b, init, clk;
output reg sum;
parameter S0 = 1'b0, S1 = 1'b1;
reg S_next, S;
// Next-state logic
always @(*) begin

end
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Serial Adder FSM
In Verilog
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module serialadderfsm (a, b, init, clk, sum);
parameter n = 8;
input a, b, init, clk;
output reg sum;
parameter S0 = 1'b0, S1 = 1'b1;
reg S_next, S;
// Next-state logic
always @(*) begin

end

S0 S1
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Serial Adder FSM
In Verilog
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module serialadderfsm (a, b, init, clk, sum);
parameter n = 8;
input a, b, init, clk;
output reg sum;
parameter S0 = 1'b0, S1 = 1'b1;
reg S_next, S;
// Next-state logic
always @(*) begin
S_next = S0;
case (S)
S0: begin
if (init)       S_next = S0;
else if (a & b) S_next = S1;
else S_next = S0;

end
S1: begin
if (init)         S_next = S0;
else if (~a & ~b) S_next = S0;
else S_next = S1;

end
default: S_next = S0;

endcase
end

S0 S1
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Serial Adder FSM
In Verilog
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module serialadderfsm (a, b, init, clk, sum);
parameter n = 8;
input a, b, init, clk;
output reg sum;
parameter S0 = 1'b0, S1 = 1'b1;
reg S_next, S;
// Next-state logic
always @(*) begin
S_next = S0;
case (S)
S0: begin
if (init)       S_next = S0;
else if (a & b) S_next = S1;
else S_next = S0;

end
S1: begin
if (init)         S_next = S0;
else if (~a & ~b) S_next = S0;
else S_next = S1;

end
default: S_next = S0;

endcase
end
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Serial Adder FSM
In Verilog
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// State memory
// Synchronous reset
always @ (posedge clk) begin
if (init)  S <= S0;
else S <= S_next;

end

// Output logic
always @(*) begin
if (S == S0) sum = a ^ b;
else sum = ~(a ^ b);

end

endmodule

S0 S1
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Literature
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▪ Appendix A: Verilog Reference
▪ A.14.8, A.14.9

▪ Chapter 6: Synchronous Sequential Circuits
▪ 6.5 Serial Adder Example


